

SPECIFICATION AGM 2002G-206

CUSTOMER :	
MODULE NO.:	AGM 2002G-206

APPROVED BY:			
(FOR CUSTOMER USE ONLY)	PCB VERSION:	DATA:	

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY

VERSION	DATE	REVISED	SUMMARY
		PAGE NO.	
A	2008/10/21	13	Modify Character
			Generator ROM Pattern

MODLE NO:	
-----------	--

RECORDS OF REVISION				DOC. FIRST ISSUE
VERSION	DATE	REVISED PAGE NO.	su	MMARY
0	2006.07.07		Fi	rst issue
A	2008/10/21	13	M	odify Character Generator
			R	OM Pattern

Contents

- 1.Module Classification Information
- 2. Precautions in use of LCD Modules
- 3.General Specification
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6. Optical Characteristics
- 7.Interface Pin Function
- 8. Contour Drawing & Block Diagram
- 9. Function Description
- 10. Character Generator ROM Pattern
- 11.Instruction Table
- 12. Timing Characteristics
- 13.Initializing of LCM
- 14.Reliability
- 15.Backlight Information
- 16. Inspection specification
- 17. Material List of Components for RoHs

1. Module Classification Information

▲ Brand: AGTechnologies

⑤ Display Type : H→Character Type, G→Graphic Type

▲ Display Font: Character 20 words, 2Lines.

* Model serials no.

 \bigcirc Backlight Type : N \rightarrow Without backlight T \rightarrow LED, White

 $B \rightarrow EL$, Blue green $A \rightarrow LED$, Amber $D \rightarrow EL$, Green $R \rightarrow LED$, Red $W \rightarrow EL$, White $O \rightarrow LED$, Orange $F \rightarrow CCFL$, White $G \rightarrow LED$, Green

Y→LED, Yellow Green

★ LCD Mode: B→TN Positive, Gray T→FSTN Negative

N→TN Negative,

G→STN Positive, Gray

Y→STN Positive, Yellow Green

M→STN Negative, Blue

F→FSTN Positive

© LCD Polarize A→Reflective, N.T, 6:00 H→Transflective, W.T,6:00

Type/ Temperature D→Reflective, N.T, 12:00 K→Transflective, W.T,12:00 range/ View direction $C \rightarrow Reflective$, W. T, 6:00 C→Transmissive, N.T,6:00 F→Transmissive, N.T,12:00 B→Transflective, N.T,6:00 I→Transmissive, W. T, 6:00 E→Transflective, N.T.12:00 L→Transmissive, W.T,12:00

Special Code JT: English and Japanese standard font

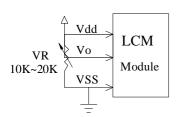
#:Fit in with the ROHS Directions and regulations

2. Precautions in use of LCD Modules

- (1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3) Don't disassemble the LCM.
- (4) Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6) Soldering: only to the I/O terminals.
- (7) Storage: please storage in anti-static electricity container and clean environment.
- (8). AGT have the right to change the passive components
- (9). AGT have the right to change the PCB Rev.

3. General Specification

Item	Dimension	Unit	
Number of Characters	20 characters x 2Lines —		
Module dimension	180.0 x 40.0 x 13.9(MAX)	mm	
View area	149.0 x 23.0	mm	
Active area	142.8 x 20.64	mm	
Dot size	1.12 x 1.12	mm	
Dot pitch	1.22 x 1.22	mm	
Character size	6.0 x 9.66	mm	
Character pitch	7.2 x 10.98 mm		
LCD type	STN, Positive, Transflective, Yellow Green (In LCD production, It will occur slightly color difference. We can only guarantee the same color in the same batch.)		
Duty	1/16		
View direction	6 o'clock		
Backlight Type	LED Yellow Green		

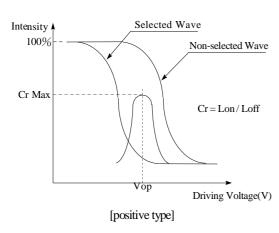

4. Absolute Maximum Ratings

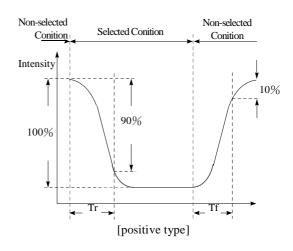
Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	T_{OP}	-20	_	+70	$^{\circ}\!\mathbb{C}$
Storage Temperature	T_{ST}	-30	_	+80	$^{\circ}\!\mathbb{C}$
Input Voltage	V _I	V _{SS}	_	V_{DD}	V
Supply Voltage For Logic	$V_{ m DD} ext{-}V_{ m SS}$	-0.3	_	7	V
Supply Voltage For LCD	$V_{ m DD} ext{-}V_0$	-0.3	_	13	V

5. Electrical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}	_	4.5	5.0	5.5	V
Supply Voltage For LCD		Ta=-20°C	_	_	5.7	V
*Note	V_{DD} - V_0	Ta=25°C	_	4.5	_	V
		Ta=70°C	3.5	_	_	V
Input High Volt.	V_{IH}	_	0.7 V _{DD}	_	$V_{ m DD}$	V
Input Low Volt.	V _{IL}	_	V _{SS}	_	0.6	V
Output High Volt.	V _{OH}	_	3.9	_	_	V
Output Low Volt.	V_{OL}	_	_	_	0.4	V
Supply Current	I_{DD}	V _{DD} =5V	1.2	1.6	2.0	mA

^{*} Note: Please design the VOP adjustment circuit on customer's main board

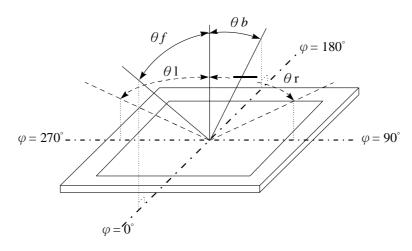



6. Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	(V) θ	CR≧2	20	_	40	deg
View Angle	(H) φ	CR≧2	-30	_	30	deg
Contrast Ratio	CR	_	_	3	_	_
Dosnonso Timo	T rise	_	_	150	200	ms
Response Time	T fall	_	_	150	200	ms

Definition of Operation Voltage (Vop)

Definition of Response Time (Tr, Tf)

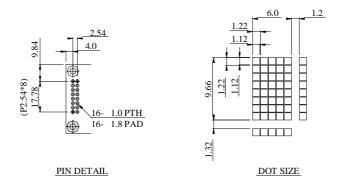

Conditions:

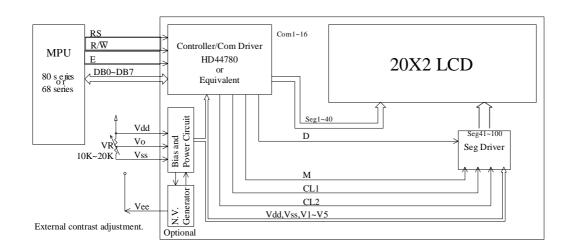
Operating Voltage: Vop

Viewing Angle(θ , φ): 0° , 0°

Frame Frequency: 64 HZ Driving Waveform: 1/N duty, 1/a bias

Definition of viewing angle ($CR \ge 2$)


7.Interface Pin Function


Pin No.	Symbol	Level	Description
1	V _{SS}	0V	Ground
2	V_{DD}	5.0V	Supply Voltage for logic
3	VO	(Variable)	Operating voltage for LCD
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU→Module) L: Write(MPU→Module)
6	Е	H,H→L	Chip enable signal
7	DB0	H/L	Data bus line
8	DB1	H/L	Data bus line
9	DB2	H/L	Data bus line
10	DB3	H/L	Data bus line
11	DB4	H/L	Data bus line
12	DB5	H/L	Data bus line
13	DB6	H/L	Data bus line
14	DB7	H/L	Data bus line
15	A	_	LED +
16	K	_	LED -

8. Contour Drawing & Block Diagram

PIN NO.	SYMBOL
1	Vss
2	Vdd
3	Vo
4	RS
5	R/\overline{W}
6	E
7	DB0
8	DB1
9	DB2
10	DB3
11	DB4
12	DB5
13	DB6
14	DB7
15	A
16	K

Character located DDRAM address DDRAM address 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 10 10 10 20 3 04 05 06 07 08 09 04 08 06 06 06 07 08 10 11 12

00	01	02	03	04	05	06	07	08	09	UΑ	0B	0C	0D	0E	0F	10	11	12	13
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53

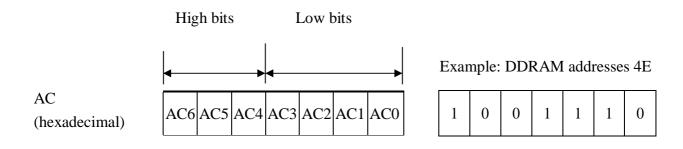
9. Function Description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB7)
1	0	Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)
1	1	Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)

Busy Flag (BF)


When the busy flag is 1, the controller LSI is in the internal operation mode, and the next instruction will not be accepted. When RS=0 and R/W=1, the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0.

Address Counter (AC)

The address counter (AC) assigns addresses to both DDRAM and CGRAM

Display Data RAM (DDRAM)

This DDRAM is used to store the display data represented in 8-bit character codes. Its extended capacity is 80×8 bits or 80 characters. Below figure is the relationships between DDRAM addresses and positions on the liquid crystal display.

Display position DDRAM address

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19 2	20
00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53

2-Line by 20-Character Display

Character Generator ROM (CGROM)

The CGROM generate 5x8 dot or 5x10 dot character patterns from 8-bit character codes. See Table 2.

Character Generator RAM (CGRAM)

In CGRAM, the user can rewrite character by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns

Table 1.

For 5 * 8 dotcharacter patterns

Character Codes (DDRAMdata)	C G R A M A d d r e s s	C haracter Patterns (CGRAMdata)
7654 3 2 1 0	5 4 3 2 10	7654 3 2 10
H ig h L o w	High Low	High Low
0 0 0 0 *000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*** *** 0 0 0 *** 0 0 0 Character pattern(1) *** 0 0 0 0 Cursorpattern Cursorpattern
00 0 0 * 0 0 1	0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0	* * * * 0 0 0 0 0 0 Character pattern(2) *** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		· · · ·
00 00 * 1 1 1	1 1 1 1 0 0 1 0 1 1 1 0 1 1 1	***

For 5 * 10 dotcharacter patterns

Character Codes (DDRAMdata)	C G R A M A d d r e	c	Character Patterns (CGRAMdata)	
7 6 5 4 3 2 10	5 4 3 2	0	7 6 5 4 3 2 10	
High Low	High Lov		High Low	
0 0 0 0 *000	0 0 0 1 0 1 0 1 1 0	0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0	* * * * 0 <td< td=""><td>Character pattern Cursorpattern</td></td<>	Character pattern Cursorpattern
			1	
	1111		***	

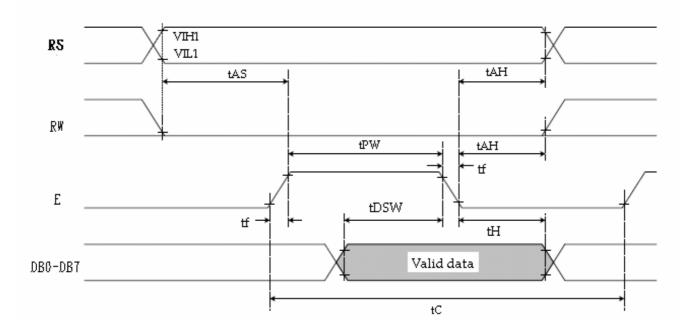
■ : " Hig h "

10. Character Generator ROM Pattern

Table.2

Upper 4 bit																
Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL L	ннн ні	LL	HLLH I	HLHL H	LHH HF	ILL HHI	_н ннн	L HHHI	Ī
LLLL	CG RAM (1)					::::	***	:::: -					-=-		8 <u></u> 8	<u> </u> ::::
LLLH	(2)		1					-:::			:::			·	-===1	
LLHL	(3)		11				i;	i			===		! <u>!</u> .!	<u>.:::</u> *		
LLHH	(4)					=	ŧ	·			!	:: <u>.</u> :		-	====	=:-:=
LHLL	(5)		-:					·i			٠.		i		 	:::::
LHLH	(6)		**					.			==			***	!	II
LHHL	(7)		:::-		 	I.,.		I.,.I							 	######################################
LHHH	(8)		-				:	ii				!	:-:		!!	111
HLLL	(1)		1.	::			i	<u>::::</u>			:	•:::	•••••	·.!	E	
HLLH	(2)				***	1	***	••				•	!		1	II
HLHL	(3)		:-[-:	##			!						1 1	<u>.</u>		==[==
НЬНН	(4)			::				•				•			1-1];
HHLL	(5)		:=		i i i 			# # # # #			·[·::	∷ .₌	···i	I		:::
HHLH	(6)						 					:	-*- ₋ :	=	=====	
HHHL	(7)		==				!- ^{**} !					-	: : :	* * *	 	
нннн	(8)			-"			·	-=			: :.:	·!	:	===	11	

11. Instruction Table

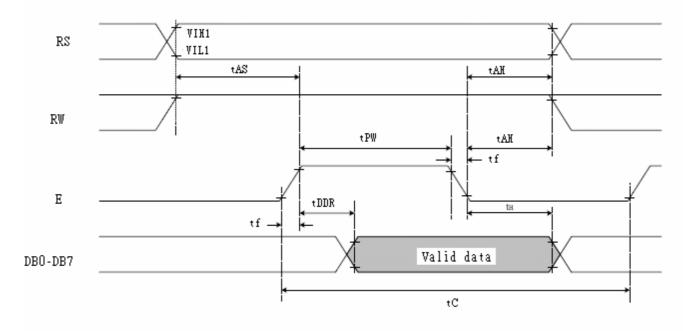

Instruction				In	structi	ion Co	ode		Description	Execution time		
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(fosc=270Khz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "00H" to DDRAM and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	_	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	39 μ s
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.	39 μ s
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	_	_	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39 μ s
Function Set	0	0	0	0	1	DL	N	F	_	_	Set interface data length (DL:8-bit/4-bit), numbers of display line (N:2-line/1-line)and, display font type (F:5×11 dots/5×8 dots)	39 μ s
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39 μ s
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39 μ s
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 μ s
Write Data to	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43 μ s
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43 μ s

* "-": don't care

12. Timing Characteristics

12.1 Write Operation

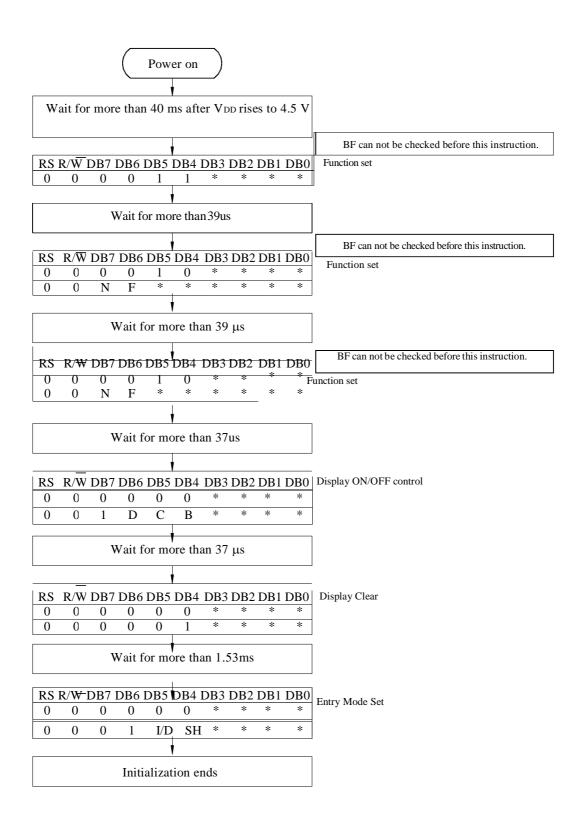
Writing data from MPU

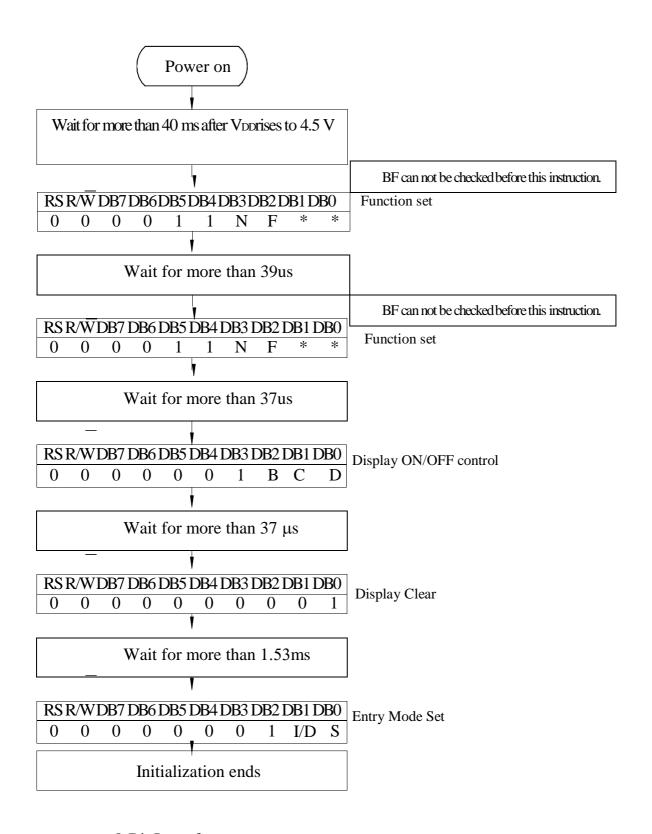


Ta=25°C, VDD=5.0V

Item	Symbol	Min	Тур	Max	Unit
Enable cycle time	$T_{\rm C}$	1200	_	_	ns
Enable pulse width	T_{PW}	140	_	_	ns
Enable rise/fall time	T_R,T_F	_	_	25	ns
Address set-up time (RS, R/W to E)	t_{AS}	0	_	_	ns
Address hold time	t _{AH}	10	_	_	ns
Data set-up time	$t_{ m DSW}$	40	_	_	ns
Data hold time	t _H	10	_	_	ns

12.2 Read Operation


Reading data from \$T7066U


 $Ta=25^{\circ}C$, VDD=5V

Item	Symbol	Min	Тур	Max	Unit
Enable cycle time	$T_{\rm C}$	1200	_	_	ns
Enable pulse width (high level)	T _{PW}	140	_	_	ns
Enable rise/fall time	T_R,T_F	_	_	25	ns
Address set-up time (RS, R/W to E)	t_{AS}	0	1	1	ns
Address hold time	t _{AH}	10	_	_	ns
Data delay time	t _{DDR}	_	_	100	ns
Data hold time	t _H	10	_		ns

13. Initializing of LCM

4-Bit Ineterface

8-Bit Ineterface

14. Reliability

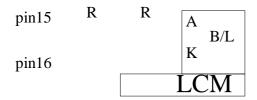
Content of Reliability Test (wide temperature, -20°C~70°C)

	Environmental Test		
Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C 200hrs	2
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-30°C 200hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70°C 200hrs	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	1
High Temperature/ Humidity Operation	The module should be allowed to stand at 60 °C,90%RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	60°C,90%RH 96hrs	1,2
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation -20°C 25°C 70°C 30min 5min 30min 1 cycle	-20°C/70°C 10 cycles	
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude: 1.5mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V,RS=1.5kΩ CS=100pF 1 time	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: Vibration test will be conducted to the product itself without putting it in a container.

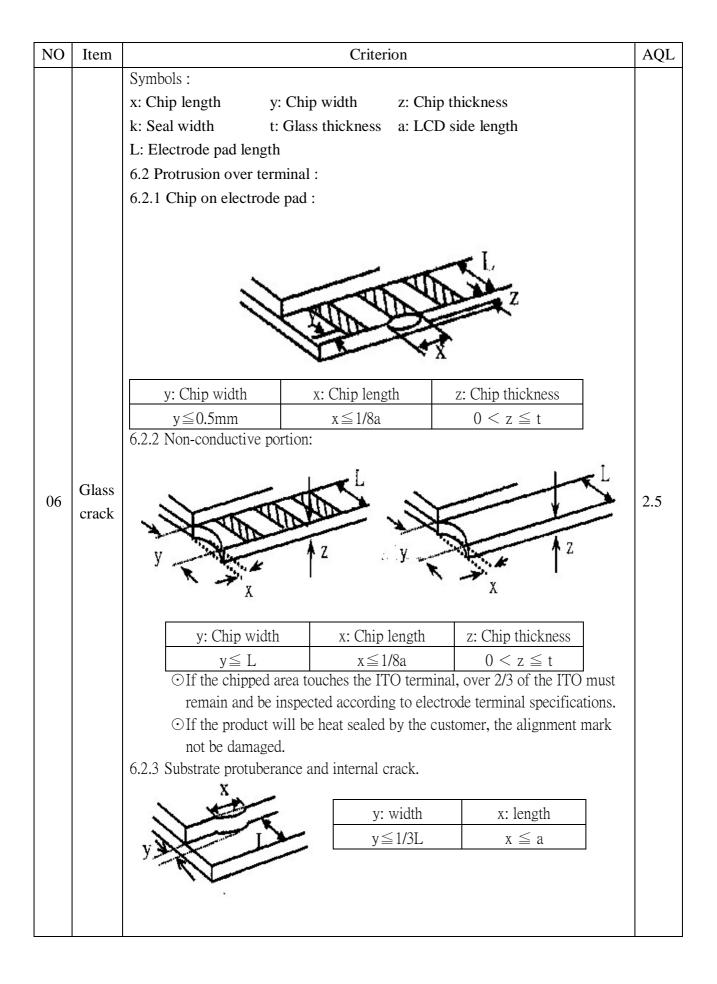

15. Backlight Information

Specification

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITION
Supply Current	ILED	288	360	540	mA	V=4.2V
Supply Voltage	v	4.0	4.2	4.4	V	-
Reverse Voltage	VR	-	-	8	V	-
Luminous Intensity	IV	90	150	-	CD/M ²	ILED=360mA
Wave Length	λp	560	570	580	nm	ILED=360mA
Life Time	-	-	100000	-	Hr.	ILED=360mA
Color	Yellow Gro	een	•	•	•	

Note: The LED of B/L is drive by current only; driving voltage is only for reference To make driving current in safety area (waste current between minimum and maximum).

Drive from pin15,pin16



(Will never get Vee output from pin15)

16. Inspection specification

NO	Item	Criterion	AQL					
01	Electrical Testing	 1.1 Missing vertical, horizontal segment, segment contrast defect. 1.2 Missing character, dot or icon. 1.3 Display malfunction. 1.4 No function or no display. 1.5 Current consumption exceeds product specifications. 1.6 LCD viewing angle defect. 1.7 Mixed product types. 1.8 Contrast defect. 						
02	Black or white spots on LCD (display only)	 2.1 White and black spots on display ≤0.25mm, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm 	2.5					
03	LCD black spots, white spots, contamination (non-display)	3.1 Round type : As following drawing $\Phi = (x + y)/2$ X $\Phi \le 0.10$ $0.10 < \Phi \le 0.20$ $0.20 < \Phi \le 0.25$ $0.25 < \Phi$ 3.2 Line type : (As following drawing) $C = W \le 0.02$ $C = W \le 0.03$ $C = W \le 0.05$	2.5 Y					
04	Polarizer bubbles	If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Chip thickness LCD side length			
LCD side length			
an manalar			
2			
THE REPORT OF THE PARTY OF THE			
vu Chin lanath			
±00 x ≤ 1/00			
	2.5		
•			
V			
1			
•			
x: Chip length			
x≤1/8a			
⊙ If there are 2 or more chips, x is the total length of each chip.			
	x≤1/8a		

NO	Item	Criterion	AQL	
07	Cracked glass	The LCD with extensive crack is not acceptable.		
08	Backlight elements	 8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using LCD spot, lines and contamination standards. 8.3 Backlight doesn't light or color wrong. 	0.65 2.5 0.65	
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination.9.2 Bezel must comply with job specifications.	2.5 0.65	
10	PCB、COB	 10.1 COB seal may not have pinholes larger than 0.2mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC. 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. 10.4 There may not be more than 2mm of sealant outside the seal area on the PCB. And there should be no more than three places. 10.5 No oxidation or contamination PCB terminals. 10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product characteristic chart. 10.8 If solder gets on bezel tab pads, LED pad, zebra pad or screw hold pad, make sure it is smoothed down. 10.9 The Scraping testing standard for Copper Coating of PCB 	2.5 2.5 0.65 2.5 0.65 2.5 2.5 2.5	
11	Soldering	 11.1 No un-melted solder paste may be present on the PCB. 11.2 No cold solder joints, missing solder connections, oxidation or icicle. 11.3 No residue or solder balls on PCB. 11.4 No short circuits in components on PCB. 	2.5 2.5 2.5 0.65	

NO	Item	Criterion	AQL
12	General appearance	 12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 12.2 No cracks on interface pin (OLB) of TCP. 12.3 No contamination, solder residue or solder balls on product. 12.4 The IC on the TCP may not be damaged, circuits. 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever. 12.6 The residual rosin or tin oil of soldering (component or chip component) is not burned into brown or black color. 12.7 Sealant on top of the ITO circuit has not hardened. 12.8 Pin type must match type in specification sheet. 12.9 LCD pin loose or missing pins. 12.10 Product packaging must the same as specified on packaging specification sheet. 12.11 Product dimension and structure must conform to product specification sheet. 	2.5 0.65 2.5 2.5 2.5 2.5 0.65 0.65 0.65 0.65

17. Material List of Components for RoHs

1. AGT Display Co., Ltd hereby declares that all of or part of products (with the mark "#"in code), including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.

Exhibit A: The Harmful Material List

.

Material	(Cd)	(Pb)	(Hg)	(Cr6+)	PBBs	PBDEs
Limited Value	100 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm
Above limited value is set up according to RoHS.						

2. Process for RoHS requirement:

(1) Use the Sn/Ag/Cu soldering surface; the surface of Pb-free solder is rougher than we used before.

(2) Heat-resistance temp. :

Reflow: 250° C, 30 seconds Max.;

Connector soldering wave or hand soldering : 320° C, 10 seconds max.

(3) Temp. curve of reflow, max. Temp. $: 235\pm5^{\circ}\mathbb{C}$;

Recommended customer's soldering temp. of connector: 280°C, 3 seconds.

LCM Sample Estimate Feedback Sheet

Module Number:			Page: 1	
1 · P	Panel Specification:			
1.	Panel Type:	Pass	☐ NG ,	
2.	View Direction:	Pass	☐ NG ,	
3.	Numbers of Dots:	Pass	☐ NG ,	
4.	View Area:	Pass	☐ NG ,	
5.	Active Area:	Pass	☐ NG ,	
6.	Operating Temperature:	Pass	□ NG ,	
7.	Storage Temperature:	Pass	☐ NG ,	
8.	Others:			
2 · <u>N</u>	<u>Mechanical Specification</u> :			
1.	PCB Size:	Pass	☐ NG ,	
2.	Frame Size :	Pass	☐ NG ,	
3.	Materal of Frame:	Pass	☐ NG ,	
4.	Connector Position:	Pass	☐ NG ,	
5.	Fix Hole Position:	Pass	☐ NG ,	
6.	Backlight Position:	Pass	☐ NG ,	
7.	Thickness of PCB:	Pass	☐ NG ,	
8.	Height of Frame to PCB:	Pass	☐ NG ,	
9.	Height of Module:	Pass	□ NG ,	
10	. Others:	Pass	□ NG ,	
3 · <u>F</u>	Relative Hole Size:			
1.	Pitch of Connector:	Pass	□ NG ,	
2.	Hole size of Connector:	Pass	□ NG ,	
3.	Mounting Hole size:	Pass	□ NG ,	
4.	Mounting Hole Type:	Pass	□ NG ,	
5.	Others:	Pass	□ NG ,	
4 \ <u>B</u>	acklight Specification:			
1.	B/L Type:	Pass	□ NG ,	
2.	B/L Color:	Pass	□ NG ,	
	B/L Driving Voltage (Refere	nce for LED	Type): Pass NG,	
	B/L Driving Current:	Pass	□ NG ,	
	Brightness of B/L:	Pass	□ NG ,	
6.	B/L Solder Method:	Pass	□ NG ,	
7.	Others:	Pass	□ NG ,	

> > Go to page 2 < <

Module Number:			Page: 2		
5、	Electronic Characteristics of	Module:			
1.	Input Voltage:	Pass	□ NG ,		
2.	Supply Current:	Pass	□ NG ,		
3.	Driving Voltage for LCD:	Pass	□ NG ,		
4.	Contrast for LCD:	Pass	□ NG ,		
5.	B/L Driving Method:	Pass	☐ NG ,		
6.	Negative Voltage Output:	Pass	☐ NG ,		
7.	Interface Function:	Pass	☐ NG ,		
8.	LCD Uniformity:	☐ Pass	☐ NG ,		
9.	ESD test:	☐ Pass	☐ NG ,		
10.	Others:	☐ Pass	☐ NG ,		
6、	Summary :				
	Sales signature:		_		
	Customer Signature:		Date : / /		